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Abstract

In situ imageomics leverages machine learning techniques
to infer biological traits from images collected in the field,
or in situ, to study individuals organisms, groups of wildlife,
and whole ecosystems. Such datasets provide real-time social
and environmental context to inferred biological traits, which
can enable new, data-driven conservation and ecosystem man-
agement. The development of machine learning techniques
to extract biological traits from images are impeded by the
volume and quality data required to train these models. Au-
tonomous, unmanned aerial vehicles (UAVs), are well suited
to collect in situ imageomics data as they can traverse remote
terrain quickly to collect large volumes of data with greater
consistency and reliability compared to manually piloted UAV
missions. However, little guidance exists on optimizing au-
tonomous UAV missions for the purposes of remote sensing
for conservation and biodiversity monitoring. The UAV video
dataset curated by KABR: In-Situ Dataset for Kenyan Animal
Behavior Recognition from Drone Videos (Kholiavchenko et al.
2024) required three weeks to collect, a time-consuming and
expensive endeavor. Our analysis of KABR revealed that a
third of the videos gathered were unusable for the purposes of
inferring wildlife behavior. We analyzed the flight telemetry
data from portions of UAV videos that were usable for infer-
ring wildlife behavior, and demonstrate how these insights can
be integrated into an autonomous remote sensing system to
track wildlife in real time. Our autonomous remote sensing
system optimizes the UAV’s actions to increase the yield of
usable data, and matches the flight path of an expert pilot with
an 87% accuracy rate, representing an 18.2% improvement in
accuracy over previously proposed methods.

Introduction
Imageomics is a new scientific field that aims to understand
and analyze biological traits of organisms, species, popula-
tions, and ecosystems from images (Imageomics 2023). In
situ imageomics focuses on studying biological organisms
and systems within the context of their natural environment.
Sources of such datasets include photos and videos captured
by experts using camera traps (Brookes et al. 2023; Zualker-
nan et al. 2022) , UAVs (Koger et al. 2023; Andrew, Great-
wood, and Burghardt 2019), and citizen scientists, such as
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Figure 1: Autonomous Remote Sensing System for In Situ
Imageomics

iNaturalist (Horn et al. 2018). As wildlife respond to chang-
ing environmental conditions due to climate change, new
approaches to remote sensing data collection and analysis are
required to develop data-driven approaches to conservation
and ecosystem management. Technological advancements in
remote sensing data collection technology, namely camera
traps (Brookes et al. 2023; Tabak et al. 2019) and UAVs (Kho-
liavchenko et al. 2024; Koger et al. 2023), have made it easier
to gather large volumes of biological data more quickly than
traditional manual techniques. With an imageomics approach,
biological insights can be extracted from these datasets at
scale using machine learning techniques. However, these
models require massive volumes of quality data far exceed-
ing what it typically captured for biological studies. This
is particularly vital for models built to accomplish specific
tasks, such as inferring behavior with the environmental and
social context, which is difficult to infer from camera traps
or data gathered by citizen scientists.

UAVs are well suited to gather the volume of data re-
quired to train such machine learning models for specific
tasks. UAVs can dynamically track wildlife to capture fine-
grained details, such as behavior, while traversing remote
terrain quickly with little disturbance to the surrounding land-
scape. Experts pilots are required to conduct UAV missions
tailored to the specific species and region. The ability to
conduct such specialized missions with autonomous UAVs
would significantly reduce the barriers to conduct this re-



search. Previous works have demonstrated that autonomous
UAV missions are 3x cheaper, safer, more consistent, and
reliable than manual flights (Boubin et al. 2019; Kline et al.
2023).

Existing autonomous UAVs methods are not optimized
for in situ imageomics data collection. Autonomous UAVs
may lose track of individuals over large distances, or fail to
capture fine-grain details such as social dynamics. For both
autonomous and manual approaches, crucial time may wasted
on collecting and storing images with poor lighting and view-
ing angles. Such datasets require more storage and transport
costs, and require more manual pre-processing before they
can be analyzed. Our analysis of a three-day subset of the
KABR dataset (Kholiavchenko et al. 2024) revealed that only
2.2 hours of video was captured, and of that, only 65% was
usable for the mission objective of inferring wildlife behavior.
UAVs have only recently become inexpensive enough for
widespread use in biology applications, so little guidance
exists on optimal strategies for maximizing the usable data
yielded from such missions.

In this work, we analyze the flight telemetry from portions
of videos successfully used to extract behavior data in KABR.
We demonstrate how these insights can be integrated into
a remote sensing system to improve the performance of au-
tonomous UAVs to gather videos of wildlife behavior, with
Kenyan animal behavior as a use-case. Figure 1 illustrates
such an autonomous remote sensing system for in situ im-
ageomics. We show that dynamically adjusting the altitude
and minimizing the movement of the UAV while ensuring
that the wildlife are in view leads to higher usability rate of
the collected videos.

Methodology
We analyzed the flight telemetry data from portions of the
UAV videos successfully used to extract behavior data from
KABR: In-Situ Dataset for Kenyan Animal Behavior Recog-
nition from Drone Videos from Kholiavchenko et al. (2024).
The videos were collected at the Mpala Research Centre in
Laikipia, Kenya using a DJI Air 2S in 4K resolution over a
period of three weeks in January 2023. The dataset includes
three species: Plains zebra (Equus quagga), Grevy’s zebra
(Equus grevyi), and reticulated giraffes (Giraffa reticulata).
The KABR dataset includes the bounding box coordinates
for each animal in the frame, the behavior annotations for
each bounding box in each frame of the video, and the frame
number and timestamp information. Since we were only in-
terested in frames that contained usable behavior data, we
excluded the subset of frames containing behavior annota-
tions of “Occluded” “Out of Frame” or “Out of Focus” from
our count of usable frames. Next, we obtained the telemetry
data produced by the manually flown UAV missions. The
telemetry data for each mission began at the time the UAV
was powered on and launched and ended once the UAV was
returned to the pilot and powered off. The telemetry data
contains data gathered during the UAV flight which describes
the status of the system, including altitude, speed, direction,
and battery level. We used the frame number and timestamp
information to reconcile the behavioral annotations with the
corresponding telemetry data, as shown in Table 1.

Figure 2: Distribution of altitude, velocity, and bounding box
values associated with usable video data for wildlife behavior
inference

After reconciling the available telemetry and behavioral
annotations, our final dataset consisted of 133 minutes of
raw videos from 10 missions over three days. Of this final
dataset, only 87 minutes contained video frames of suitable
quality to both detect the animals of interest and determine
their behavior, which is a 65% usability rate. In other words,
a third of the video data collected in the field could not be
used to infer animal behavior using computer vision meth-
ods. We analyzed the telemetry data to identify what range
of altitudes and bounding box values produced video that
was suitable to be analyzed with machine learning computer
vision methods. Specifically, we focused on computer visions
methods for object detection with YOLO (Jocher, Chaurasia,
and Qiu 2023) to automatically localize the animals in the
scene and automatic behavior detection proposed in KABR
to automatically extract behavior. Using these insights, we
improved the autonomous navigation UAV model proposed
in Kline et al. (2023) to increase the yield of usable video
data. We implemented the autonomous navigation model
from Kline et al. (2023) using the Yolov8n model (Jocher,
Chaurasia, and Qiu 2023) as the object detection model to
localize the animals.

Results and Discussion
We used our telemetry analysis shown in Table 2 and Figure
2 to improve the autonomous navigation model for tracking
wildlife proposed in Kline et al. (2023). This autonomous
navigation model samples the video stream once every sec-
ond, and utilizes a YOLO model (Jocher, Chaurasia, and
Qiu 2023) to automatically detect the animals in the frame.
Once a zebra or giraffe is detected, the navigation model



Data Description Source
Date & Time Date and time of video Telemetry & KABR
Frame Video frame (30 frames per second) Telemetry & KABR
Behavior Behavior of the animal KABR
Bounding Box Dimensions Dimensions of the bounding boxes surrounding the animal in pixels KABR
Speed Velocity of the UAV in x,y,z direction (meters per second) Telemetry
Altitude Altitude of UAV above ground (meters) Telemetry

Table 1: Telemetry and KABR DatasetKholiavchenko et al. (2024)

Altitude (m) Velocity (m/s) Bounding Box Width (pixels) Bounding Box Length (pixels)
Mean 17.55 0.62 106.22 110.40
Standard Deviation 7.80 1.31 61.65 69.01
Minimum 4.40 0.00 11.00 14.00
25% 12.70 0.00 61.00 61.67
50% 14.90 0.00 92.00 96.67
75% 19.80 0.63 136.00 137.00
Maximum 71.60 12.47 583.00 767.00

Table 2: Telemetry Data Analysis: Ranges of Optimal Values for UAV altitude, velocity, and animal bounding box sizes in pixels

Figure 3: Example Autonomous Navigation Model Output

uses the bounding box dimensions generated by YOLO to
determine the commands to send to the UAV. For situations
when multiple animals are in the frame, this approach tracks
the group by using the bounding box values to calculate the
herd centroid. If this value strays sufficiently far from the
centroid of the UAV’s camera, the navigating model sends
commands to the UAV to adjust its position to return the herd
centroid to the center of the camera’s view. One weakness of
this autonomous navigation approach is that it is constrained
to generating commands in x-y plane only (i.e. ‘fly left/right’
and ‘fly forward/backward’), since this approach assumes a
constant altitude.

Our approach adds the ability to generate commands in
z-direction (altitude), as well as the x and y directions, by
integrating the insights from the telemetry analysis. This new

and improved autonomous navigation model includes a range
of preferred altitudes to tune the UAV’s flight path. We also
improve the autonomous navigation model by minimizing
the movement of the UAV while navigating the UAV close
enough for the bounding boxes to measure at approximately
100 × 100 pixels. This produces a 18.2% increase in accu-
racy and a 8.3% increase in the F1 score, as shown in Table
3. Figure 3 shows the output of the autonomous navigation
model proposed here. We report the F1 value, which com-
bines the precision and recall scores of the model’s predicted
commands to the UAV. For this application, ‘positive’ values
means that the UAV is directed to move, while ‘negative’
values means that the UAV is directed to hover in place. An
example of a ‘true positive’ result would be the model cor-
rectly predicting that the next command sent to the UAV
should ‘fly left 3 meters’. An example of a ‘false positive’
result would be the model incorrectly predicting that the next
command sent to the UAV should ‘fly left 3 meters’, when the
correct decision was directing the UAV to hover in place, as
determined by the expert pilot executing the manual mission.
The accuracy values reported in Table 3 simply measures the
number of predicted commands that match the original flight
path conducted by the expert pilot. The telemetry dataset is
imbalanced in favor of ‘positive’ values, so the F1 score is a
better measure of performance compared to accuracy.

As shown in Table 2, the mean altitude of the usable behav-
ior video frames is 17.55 meters with a standard deviation of
7.8 meters. The maximum altitude is 71.60 meters, however
the 75th percentile is 19.8 meters, so this maximum is an
outlier. Figure 4 shows the relationship between behavior and
altitude, where behaviors are ordered by how often they occur
in the KABR dataset. The majority of the behavior samples
were collected below 30 meters, with rare behaviors such as
‘urinating’ and ‘defecating’ captured below 20 meters. These
results suggest that behavior is best captured between 10 and



Metric Original Navigation Model New & Improved Navigation Model Improvement
% of actions matching original flight 68.8 87.0 +18.2
F1 Score 82.1 90.4 +8.3

Table 3: Autonomous Navigation Model Performance Compared to Approach from Kline et al. (2023)

Figure 4: Behavior Distribution by Altitude (behavior labels
ordered from most to least common, left to right)

30 meters.
The mean velocity of usable video frames is 0.62 meters

per second, with a standard deviation of 1.31 meters per
second. The distribution of velocity values is shown in Ta-
ble 2 and Figure 2. For context, 0.62 meters per second is
approximately 1.4 miles per hour. The 75th percentile is only
0.63 meters per second, while the maximum velocity is 12.47
meters per second and the lower percentiles are 0 meters
per second (i.e. hovering), suggesting the maximum value
may be skewed by the UAV approaching the wildlife. These
results suggest that behavior is best captured by minimizing
the UAV’s movement and hovering once it reaches a suitable
altitude, enabling the generation of bounding boxes of the
appropriate size for behavioral analysis.

The mean bounding box dimensions is approximately
106× 110 pixels, with a standard deviation of 62× 69 pixels.
The distribution of bounding box dimensions is shown in
Figure 5. The bounding box size is related to the distance
between the UAV and the wildlife. Using the bounding box
size as an approximation for distance is an effective approach
to tracking groups of free-ranging wildlife autonomously, as
shown in Kline et al. (2023). This approach eliminates the
need for costly distance calculations, and can leverage the
bounding box values produced by light-weight object detec-
tors such as the YOLO nano model (Jocher, Chaurasia, and
Qiu 2023).

Conclusion & Future Work
We present guidelines for gathering in situ imageomics
wildlife behavior video data with UAVs and demonstrate
how these guidelines can be integrated into an autonomous

Figure 5: Bounding Box Dimension Distribution

UAV navigation model. The techniques proposed in this work
can be applied to others’ UAV wildlife video datasets to de-
termine the optimal guidelines for additional species. These
techniques can also be adapted to increase of the yield of
usable UAV data beyond wildlife behavior studies; for ex-
ample, individual identification of wildlife, such as those
implemented by Wildbook (Berger-Wolf et al. 2017). Future
work will explore integrating behavior-adaptive flight data
into autonomous UAV navigation models. This approach can
minimize the disturbance from UAV data collection by us-
ing a behavior recognition model to determine if animals
are exhibiting signs of reacting to the UAV’s presence, such
as vigilance behaviors or running. Reinforcement learning
approaches can also be used to balance competing metrics,
such as the range of altitudes and minimum desired bound-
ing box size. These approaches should be validated on free
ranging wildlife to confirm the proposed approaches produce
data suitable for analysis with computer vision techniques
for imageomics applications.

Acknowledgments
This work was supported by NSF Awards No. 2118240 and
2112606. Data was collected in accordance with Kenya’s
National Commission for Science, Technology & Innova-
tion research license NACOSTI/P/22/18214 and Princeton
University’s Institutional Animal Care and Use Committee
1835F.

References
Andrew, W.; Greatwood, C.; and Burghardt, T. 2019. Aerial
Animal Biometrics: Individual Friesian Cattle Recovery and



Visual Identification via an Autonomous UAV with Onboard
Deep Inference. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 237–243.
Berger-Wolf, T. Y.; Rubenstein, D. I.; Stewart, C. V.; Holm-
berg, J. A.; Parham, J.; Menon, S.; Crall, J.; Oast, J. V.;
Kiciman, E.; and Joppa, L. 2017. Wildbook: Crowdsourc-
ing, computer vision, and data science for conservation.
arXiv:1710.08880.
Boubin, J.; Chumley, J.; Stewart, C.; and Khanal, S. 2019.
Autonomic Computing Challenges in Fully Autonomous Pre-
cision Agriculture. In 2019 IEEE International Conference
on Autonomic Computing (ICAC), 11–17.
Brookes, O.; Mirmehdi, M.; Kühl, H.; and Burghardt, T.
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